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As a simple example, let L be a complex
symmetric operator and let

= I+ ahs, 1)

where % and %, are any two trial functions
and « is a complex parameter. Then
(k, Lh)

(hy )

_ (B, L) + 2alu, Lis) 4 o*(ha, L) @

(R, 1) + 2a(hi, he) + a2(hs, hy)
But the right-hand side of (2) is the quotient
of two quadratic polynomials in e, and in
general it will attain any preassigned value
exactly twice as « ranges over the whole
complex plane.® For example, it can be made
equal to any eigenvalue of L, even though
k1 and ks are entirely unrelated to the corre-
sponding eigenfunction. On the other hand,
applying the Rayleigh-Ritz procedure to /i
and ks yields two values of « for which the
corresponding values of (&, Lk)/(k, k) need
not and generally do not coincide with any
eigenvalue of L.
A numerical example shows the sort of

thing that can happen. Let

In= f _1[1 + i3+ plidy, B3)

and choose the trial functions
(x) =1 — sx? + isx?,
Jia(x) = 1+ 22, 4

where s is a real constant to be specified
presently. Straightforward calculation gives

- 525 32s?
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- 8 58s
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(Jy Lhs) 3 =

_ 4

(hay Lhy) = 3
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(hay h2) = — 3 (5)

We now choose s to be the larger of the
two roots of the equation

(hy, Lh) y
— — = ERVAN
W) 1+ 3v6 (6)
To five decimals,
s = 1.62669. @)

The determinantal equation resulting from
the Rayleigh-Ritz process [Kaplan's (10)]
becomes, numerically,
0.24250—0.13350n  0.57005-4-0.38581x
0.57005+40.38581x  1.3333340.66667x

=0. (8

fNotice that the variational quotient associated
with a Hermitian operator, as given by (4) of Mor-
gan,! cannot generally be made to assume arbitrary
values by proper choice of c.

Correspondence

The roots of this equation and the corre-
sponding “eigenfunctions” are
A= — 0.00357, v = hy — 0.42727)s,
Ne = — L9144, 3o = By + 2.05501%.  (9)
But since the kernel of the operator L is
of finite rank, it is easy to calculate the eigen-

values and eigenfunctions exactly. They
are®

A= 1+ 36 ~ 1.81650,
v =1+4iB—~/B)x ~1+4i0.55051x;
he=1—13/6 ~ 0.18350,
v = 1443+ vB)x ~ 1 + i5.44910y.

Il

(10)

Comparing (6) and (10), we see that the
eigenvalue M coincides exactly with the
Rayleigh quotient (i, Lki)/(h, k), even
though 71 is not a multiple of v. However
the Rayleigh-Ritz procedure gives no indi-
cation of this, and when applied to the trial
functions A and & it yields “eigenvalues”
M and A which are much worse than we
would have obtained from #; alone. Hence
the procedure clearly does not give the best
approximation to Ay which can be had from a
linear combination of %; and k..

This innocent-looking example shows
that the use of the Rayleigh-Ritz procedure
to refine an approximate eigenvalue of a
complex syminetric operator can actually
lead to a worse approximation than the
initial one. One might conjecture, of course,
that even though the variational method
does not approximate eigenvalues very well,
it does give an optimal approximation for the
eigenfunctions. Unfortunately this is not
true either. If one defines the distance be-
tween two complex-valued functions in
terms of a quadratic metric, then the best
approximation to v, which can be obtained
using a linear combination of %y and k. is
found by minimizing

[(p1, pg) = (7]1 —_ p1]11 - pz]lQ, 7 91111 — pgllﬁ)
b
- f |90 — pihr — polia|?dx  (11)

with respect to the complex coefficients pr
and p;. The minimization is easily carried
out in the present example where 7, is known,
but it does not lead to either of the Rayleigh-
Ritz “eigenfunctions.”

Dr. Kaplan suggests that the key to the
successful use of variational procedures in
non-self-adjoint problems is the selection of
appropriate trial functions, in the light of
experience and knowledge of the physical
process. One can hardly quarrel with this
objective, although it may be easier to carry
out when the unknown functions are real
than when they are complex. Certainly no
law prohibits anyone from formally applying
the Rayleigh-Ritz procedure to a selected
set of functions and thinking that he has
obtained a better approximation by so
doing. Undoubtedly in some cases he ac-
tually will get a better approximation than
he started with; but if he does not know
the exact eigenvalue in advance, he can
never be quite sure whether the Rayleigh-
Ritz procedure has served him well or ill.

% Zero is also an eigenvalue of L of infinite multi-
plicity, but 1t plays no role in the present argument.
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To the best of my knowledge, no
theorems have ever been proved which
specily the conditions, if any, under which
the Rayleigh-Ritz procedure will yield an
improved approximation to an eigenvalue of
a non-self-adjoint (for example, complex
symmetric) operator. There are such the-
orems for self-adjoint or Hermitian opera-
tors. Whether anything similar can be ob-
tained for nonself-adjoint operators is an
interesting open question.

I should like to acknowledge a stimulat-
ing exchange of correspondence on this
subject with Professor R. F. Harrington of
Syracuse University.

S. P. Morean
Bell Telephone Laboratory, Inc.
Murray Hill, N. J.

Comment on “Broadband Micro-
wave Discriminator”

The frequency discriminator described
by R. J. Mohr!is capable of a simple exten-
sion? to give a device with important ad-
vantages and many practical applications.

Mohr’s circuit (Fig. 1) measures fre-
quency in the form

,Ez 2

——— = tan? ﬂ"li

| 2 ¢

where [ is the length of the phase delay line,
fis the frequency, ¢ the phase velocity and

2mlf
=

An alternative method of processing the
detected signals is to take the difference

[Eij2— | Bef2 = Freoszm L
1

and by duplicating the circuit so that
¢'=¢—(x/2), we have

2 .

on

| Fa

2 = E?sin 2xl L
c
and hence

LY el 01 N tan ¢.
IE12'“ |E2 ¢

2

Simply, a A/4 length of line may be used to
subtract =/2 from the phase delay ¢ and
Fig. 2 shows a typical circuit. Some non-
linearity in the frequency characteristic will
result from the fact that the phase change
of w/2 will vary with frequency However,
this is small and circuits operating over fre-
quencey ranges up to 6:1 in the band 0.15
Ge to 11.5 Gce have been successfully used.
An absolute measuring accuracy of +35°in
¢ is typical and may be improved by cali-
brating individual circuits.

Manuscript recerved December 9, 1963.

1R, J. Mohr, “Broadband microwave discrim-
inator,” IEEE TRraNS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. 11, p. 263; July, 1963.

2 S, J. Robinson, “Microwave Frequency Measur-
ing Device,” British Patent Application, No. 22471/
58; July, 1958.
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Fig. 1—Simple frequency discriminator.
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Fig. 2—Quadrature frequency discriminator.

Several advantages of the arrangement
may be quoted:

1) An (7, 8) display can be used so that
0% ¢ f,

2} Using an (7, 8) display, 6 continuously
and linearly increases with frequency
over any range, although, of course,
ambiguities occur in a range of ¢
exceeding 2. “Clock” systems to give
increased accuracy without ambiguity
are possible. In this context, fre-
quency ranges representing 2nmw <¢
<2(n+1)x of 10 Mc and 10,000 Mc
are equally practicable.

3) 1Bl | Baf3= || — | Byl when Fu=
cos ¢/2 and E.=sin ¢/2 so that
errors due to departure from square
law in the detector characteristics are
very small.

4) The subtraction | Ei|2—| E;|? may be
written

(B4 E"--2E'E cos ¢) — (E/*+E'"
—2E'E" cos ¢)=4E'E" cos ¢

where E’ and E’’ are the input volt-
ages to a phase-measuring hybrid
junction, and E’sE’. It may be
shown that the product (E’E’’), for
both the phase measuring junctions,
shown in Fig. 2, is not dependent
upon equality of power split in the
power dividing junctions and that
therefore this equality is not neces-
sary for good frequency measuring
performance.

It should be noted that the four-junction
circuit, giving the sine and cosine terms, is
the same as that for a single-sideband modu-
lator and is one of a large family of multi-
port networks that might be used in phase
comparison applications. For example, an
eight detector device giving cos ¢, cos (¢
+u/4), cos (¢p+7/2) and cos (¢p+37/4) out-
puts can easily be realized. Such an arrange-
ment shows improved measuring accuracy
by removing quadrantal error terms.

STEPHEN J. ROBINSON
Systems Division
Mullard Research Labs.
Redhill, Surrey, England
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Harmonic Generation
by an Array

In the millimeter region, harmonic gen-
erators have long served as convenient
signal sources. However, the power handling
capacity of the diode elements is very lim-
ited. At the short-wave end of the milli-
meter spectrum, the dominant mode wave-
guide terminal of a harmonic generator may
also be less desirable than a quasi-optical or
beam output. These factors have led to the
investigation of a diode array as a millimeter
wave source. The results obtained show that
such an array is feasible but uneconomic
with presently available diodes.

A schematic diagram of a harmonic ar-
ray is shown in Fig. 1. The fundamental
power illuminates an array of receiving
apertures from a feed horn which may be
extended (as shown by the broken lines)
to shield the entire input region, if desired.
Depending on the spacing between feed and
array, it may be necessary to introduce
phase correction by means of a lens, or by
changing the lengths of input waveguide in
each multiplier unit. These units consist of
a receiving or input horn coupled to an
inline harmonic generator. The output
guide is proportioned to pass only the de-
sired harmonic and higher terms which
are neglected. Each output horn occupies
the same cross section as the corresponding
input aperture. This provides grating lobe
suppression, since a narrower element pat-
tern compensates for the wider spacing at
the output frequency. The output is in the
form of a beam, which can be brought to a
focus by choosing the proper phase correc-
tion on either the input or output side of the
array.

A\
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Fig. 1—Harmonic array.

To investigate the properties of a har-
monic array, a 2X$§ element array was con-
structed for fo=25 Gc, n=2. A very simple
straight-through element, as shown in Fig. 2,
was used. The individual crystals produced
an input VSWR between 4:1 and 6:1 in
this mount. Measurements on individual
elements showed that the standard devia-
tions in insertion phase shift and conversion
loss were less than 25° and 1.7 db respec-
tively for the 27 individual 1N26 crystals
tested. The harmonic output of the array
was within 1 db of the output calculated for
the sum of the individual elements, each
with the measured VSWR, and illumination
corrections applied. It was therefore con-
cluded that a harmonic array functions as a

Manuscript received December 10, 1963. The
work described here was performed under Contract
No. AF 19 (628)-397 for the Air Force Cambridge Re-
search Laboratories, Bedford, Mass.
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Fig. 2—Harmonic array element.

Fig. 3—Ten element harmonic array.

true additive structure. The array is shown
in Fig, 3.

The performance of the experimental
array shows conversion and coupling losses
of about 20 db and 6 db respectively. With
provisions for impedance matching in the
elements, and with more efficient harmonic
generators, a useful array source for milli-

meter and possibly submillimeter power
might be constructed.

D. D. Kinc

F. SoBeL

J. W. Dozier

Research Div.
Electronic Communications, Inc.
Timonium, Md.

Analogous Propagation Modes in
Inhomogeneous Plasma and
Tapered Waveguide

An interesting analogy exists between
the propagation of transverse electromag-
netic (TE) waves in a plasma (with no mag-
netic field) and in conventional waveguide.l2
This analogy reflects the similar roles played
by the volume conduction current in the
plasma and the wall conduction current in
the waveguide and is of interest in that it
provides insight into plasma propagation
and suggests the possibility of simulating

Manuscript received July 19, 1963; revised De-
cember 16, 1963. This work was performed under the
auspices of the U. S. Atomic Energy Commission.

1V, L. Ginzburg, “Propagation of Electromagnetic
Waves in Plasma,” Gordon and Breach Publishers,
Inc., New York, N. Y.; 1962,

2W. Rotman, “Plasma simulation by artificial
dielectrics and parallel-plate media,” IRE TRANS. ON
ANTENNAS AND PROPAGATION, vol. AP-10, pp. 82-95 R
January, 1962.



