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As a simple example, let L be a complex

symmetric operator and let

h = hl + ahz, (1)

where ?tL and lzz are any two trial functions

and a is a complex parameter. Then

(~, Lk)
.—

(k, h)

(z,, u,) + 241, W + C@! LILl . (2)——
(;1, k,) + 241, h,) + a’(1,, h,)

But the right-hand side of (2) is the quotient

of two quadratic polynomials in a, and in

general it will attain any preassigned value

exactly twice as a ranges over the whole
complex plane.8 For example, it can be made
equal to any eigenvalue of L, even though
k, and h, are entirely unrelated to the corre-
sponding eigenfunctiou. On the other hand,

aPPIYing the Rayleigh-Ritz procedure to ]LI

and h~ yields two values of a for which the

corresponding values of (k, Lk)/(k, it) need
not and generally do not coincide with any

eigenvalue of L.

A numerical example shows the sort of

thing that can happen. Let

J[
~v= ‘ 1 + +(.t + y) ]v(y)dy, (3)

–1

and choose the trial functions

hi(x) = 1 – @+is.v3,

)/2(2) = l+i2.t, (4)

where s is a real constant to be specified

presently. Straightforward calculation gives

(L,, Llr,) = 4 – g + ~,

(Z,,IX,) =:–~,

(k,, LhJ =;,

(i,, hJ =2-;+:,

(i,, h,) = 2 – :;,

(i,, h,) = – + . (5)

Ii’e now choose s to be the larger of the

two roots of the equation

(k,, Lb,)
— =I++v’%. (6)

(h,, !1,7

To fit,e decimals,

s = 1.62669. (7)

The determinantal equation resulting from

the Rayleigh-Ritz process [Kaplan’s (10)]

becomes, numerically,

0.24250 –O.13350A 0.57005+0.38581x

0.57005 +0.3t3581k 1.33333 +0.66667h

= O. (8)

~Notice that the variational quotient associated
with a Hermittan operator, as given by (4) of Mor-
gan,l cannot generally be made to assume arbitrary
values by proper choice of o.

Correspondence

The roots of this equation and the rorre-

spondiug ‘(eigenfunctiolls” are

~1 = – 0.00357, i, = h~ – 0.42727hl,

~2 = – 1.91444, ;, = h~ + 2.95501h~. (9)

But since the kernel of the operator L is
of finite rank, it is easy to calculate the eigem
values and eigenf unctions exacth,. They
,areg

~, = t + ~@5 = 1.81650,

11 = 1 + i(3 — <6)1 = 1 +io.55051f;

h = 1 – 3v’6 = 0.18350,

w = 1 + ‘X3 + V(5)$ = 1 + i5,’M9-19.Y. (10)

Comparing (6) and ( 10), we see that the
eigen~-alue Xl coincides exactly with the
Rayleigh quotient (~~, Llz~)/(ii, hi), even

though IJ1 is not a multiple of VI. However
the Rayleigh-Ritz procedure gives no indi-
cation of this, and when applied to the trial
~unctio~s h, and Z: it yields “eigeuvalues”

Al and A2 which are much worse than we

would have obtained from JLI alone. Hence

the procedure clearly does not gi~-e the best

approximation to Xi which can be had from a
linear combination of k., and ;LZ

This innocent-looking example shows
that the use of the Rayleigh-Ritz procedure
to refine an approximate eigentmlue of a
complex symluetric operator can actually
lead to a worse approximation than the
initial one. One might conjecture, of course,
that even though the variational method

does not approximate eigenvalues verl- well,
it does give an optimal approximation for the

eigenfunctions. Unfortunately this is not

true either. If one defines the distance be-

tween two complex-valued functions in

terms of a quadratic metric, then the best

approximation to rJI which can be obtained
using a linear combination of kl and Iz2 is

found by minimizing

I(p,, p,) = (ZJ,– p,ll, – d,, VI – p,h, – P,hz)

b

——
JI 1’

u — P1]21 — Pzh d.x (11)
.

with respect to the complex coefficients pl
and pj. The minimization is easily carried

out in the present example where rJl is known,

but it does not lead to either of the Itayleigh-

Ritz “eigenfuuctious.”

Dr. Kaplan suggests that the key to the
successful use of variational procedures in
uon-self-adjoint problems is the selection of

appropriate trial functions, in the light Of
experience and knowledge of the physical
process. One can hardly quarrel with this

objective, although it may be easier to carry
out when the unknown functions m-e real

than when they are complex. Certainly no
law prohibits anyone from formally applying

the Rayleigh-Ritz procedure to a selected

set of functions and thinking that he has
obtained a better approximation by so
doing. Undoubtedly in some cases he ac-
tually will get a better approximation than
he started with; but if he does not know
the exact eigenvalue in advance, he can
never be quite sure whether the Rayleigh-

Ritz procedure has served him well or ill.

* Zero is also an eigenvalue of L of infinite multi-
plicity, but it plays no role m the present argument.
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To the best of my knowledge, no

theorems have ever heel L proved which
specify the conditions, if an~:, under which
the Rayleigh-Ritz procedure will yield an

improved approximation to an eigen~-alue of
a nomself-adjoint (for example, complex

symmetric ) operator. The~-e are such the.
orerns for self -ad joint or Hermitian opera-
tors, \Vhether anything similar can be ob-

tained for nonself-adjoint operators is an
interesting open question.

I should like to acknowledge a stimulat-

ing exchange of correspondence on this

subject with Professor R. IF. Harringtou of

Syracuse University.
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Ilell Telephone Laboratory, Inc.

Murra}- Hill, N. J.

Comment on ‘(Broadband Micro-

wave Discriminator”

The frequency discriminator described

by R. J. Mohrl is capable of a simple exten-
sion to give a de~-ice with important ad-
vantages and many practical applications.

Mohr’s circuit (Fig, 1.) measures fre-
quency in the form

where 1 is the length of the phase delay line,

~ is the frequency, c the phase velocity and

2rry_=
+.

c

An alternative method of processing

detected signals is to take the difference

[E1\’– IE2]’=E’COS2T1L)
c

the

and by duplicating the circuit so that

@’=0–(rr/2), we have

and hence

Simply, a A/4 length of line may be used to

subtract m/2 from the phase delay @ and
Fig. 2 shows a typical circuit. Some non-
linearity in the frequency characteristic will
result from the fact that the phase change

of ~/2 will vary with frequency However,
this is small and circuits operating over fre-
queucey ranges up to 6:1 in the band 0.15

Gc to 11.5 Gc have been successfully used.
An absolute measuring acclu-acy of + 5° in
@ is typical and may be ‘improved by cali-
brating individual circuits.

Manuscript recemed December 9, 1’963.
1 R. J. Mobr, “Broadband microwave discrim-

inator, ” IEEE TRANS. ON MICROWAVE THEORY AND
TECHNIQUES, vol. 11, P. 263; July, 1963.

~ S. J. Robinson, “Microwave Frequency Measur-
ing Device, ” British Patent Application, No. 22471 /
58; July, 1958.
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Fig. I—Simple frequency discriminator,
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Fig. 2—Quadrature frequency discriminator.

Several advantages of the arrangement

may be quoted:

1)

2)

3)

4)

An (r, 6’) display can be used so that
flK ,$Xf.

Using an (r, f?) display, o continuously
and linearly increases with frequency

over any range, although, of course,

ambiguities occur in a range of C$
exceeding 27r. “Clock” systems to give

increased accuracy without ambiguity
are possible. In this context, fre-

quency ranges representing Zmr <+

<2(n+1)~ Of 10 Mc and 10,000 Mc
are equally practicable.
lE, ]i–[E,12~l E~l–l Ezlwhen E,=

cos q$/2 and EZ = sin +/2 so that

errors due to departure from square
law in the detector characteristics are
very small.
The subtraction I E, 12– I EzI z may be

written

(E’2+E’’2+2E’E” COS ~) – (~’2+E”2

– 2E’E’f cm+) = 4E’E” Cos 6

where E’ and E“ are the input volt-
ages to a phase-measuring hybrid
junction, and E’#E”. It may be
shown that the product (E’E”), for

both the phase measuring junctions,
shown in Fig. 2, is not dependent
upon equality of power split in the

power dividing junctions and that
therefore this equality is not neces-
sary for good frequency measuring
performance.

It should be noted that the four-junction
circuit, giving the sine and cosine terms, is
the same as that for a single-sideband modu-
lator and is one of a large family of multi-
port networks that might be used in phase
comparison applications. For example, an
eight detector device giving cos ~, cos (~

+7r/4), cos (@+rr/2) and cos (o+3r/4) out-
puts can easily be realized. Such an arrange-
ment shows improved measuring accuracy
by removing quadrantal error terms.

STEPHEN J. ROBINSON
Systems Division

Mullard Research Labs.
Redhill, Surrey, England

Harmonic Generation

by an Array

In the millimeter region, harmonic gen-

erators have long served as convenient

signal sources. However, the power handling

capacity of the diode elements is very lim-

ked. At the short-wave end of the milli-
meter spectrum, the dominant mode wave-

guide terminal of a harmonic generator may
also be less desirable than a quasi-optical or
beam output. These factors have led to the
investigation of a diode array as a millimeter
wave source. The results obtained show that
such an array is feasible but uneconomic

with presently available diodes.

A schematic diagram of a harmonic ar-

ray is shown in Fig. 1. The fundamental

power illuminates an array of receiving

apertures from a feed horn which may be

extended (as shown by the broken lines)
to shield the entire input region, if desired.
Depending on the spacing between feed aud
array, it may be necessary to introduce
phase correction by means of a lens, or by
changing the lengths of input waveguide in
each multiplier unit. These units consist of
a receiving or input horn coupled to an

inline harmonic generator. The output

guide is proportioned to pass only the de-
sired harmonic and higher terms which

are neglected. Each output horn occupies

the same cross section as the corresponding

input aperture. This provides grating lobe
suppression, since a narrower element pat-

tern compensates for the wider spacing at
the output frequency. The output is in the
form of a beam, which can be brc,ught to a
focus by choosing the proper phase correc-
tion on either the input or output side of the

array.

/-””

Fig. l—Harmonic array.

To investigate the properties {of a har-
monic array, a 2 X 5 element array was con-
structed for j~ = 25 Gc, n =2. A very simple

straight-through element, as shown in Fig. 2,

was used, The individual crystals produced
an input VSWR between 4:1 and 6:1 in
this mount. Measurements on individual
elements showed that the standard devia-
tions in insertion phase shift and conversion
loss were less than 25° and 1.7 db respec-

tively for the 27 individual 11N26 crystals
tested. The harmonic output of the array
was within 1 db of the output calculated for
the sum of the individual elemeuts, each
with the measured VSWR, and illumination
corrections applied. It was therefore con-
cluded that a harmonic array functions as a

Manuscript received December 10, 1963. The
work described here was performed under Contract
No. AF 19 (628).397 for the Air Force Cambridge Re-
search Laboratories, Bedford, Mass.
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Fig. 2—Harmonic array element.

true additive structure. The array is shown
in Fig, 3.

The performance of the experimental

array shows conversion and coupling losses

of about 20 db and 6 db respectively. With
provisions for impedance matching in the

elements, and with more efficient harmonic
generators, a useful array source for milli-
meter and possibly submillimeter power
might be constructed.

D. D. KING

F. SOBEL

J. W. DOZIER
Research Div.

Electronic Communications, Inc.

Timonium, Md.

Analogous Propagation Modes in

Inhomogeneous Plasma and

Tapered Waveguide

An interesting analogy exists between
the propagation of transverse electromag-
netic (TE) waves in a plasma (with no mag-
netic field) and in conventional waveguide.1 z
This analogy reflects the similar roles played

by the volume conduction current in the
plasma and the wall conduction current in
the waveguide and is of interest in that it
provides insight into plasma propagation
and suggests the possibility of simulating


